A Weighted Mean Squared Error Approach to Multiple Response Surface Optimization
نویسندگان
چکیده
منابع مشابه
Bayesian analysis for weighted mean-squared error in dual response surface optimization
Dual response surface optimization considers the mean and the variation simultaneously. The minimization of meansquared error (MSE) is an effective approach in dual response surface optimization. Weighted MSE (WMSE) is formed by imposing the relative weights, (k, 1−k), on the squared bias and variance components of MSE. To date, a few methods have been proposed for determining k. The resulting ...
متن کاملRoot Mean Squared Error
• Predictive Accuracy Measures. These measures evaluate how close the recommender system came to predicting actual rating/utility values. • Classification Accuracy Measures. These measures evaluate the frequency with which a recommender system makes correct/incorrect decisions regarding items. • Rank Accuracy Measures. These measures evaluate the correctness of the ordering of items performed b...
متن کاملEstimating a Bounded Normal Mean Relative to Squared Error Loss Function
Let be a random sample from a normal distribution with unknown mean and known variance The usual estimator of the mean, i.e., sample mean is the maximum likelihood estimator which under squared error loss function is minimax and admissible estimator. In many practical situations, is known in advance to lie in an interval, say for some In this case, the maximum likelihood estimator...
متن کاملMean-Squared Error Beamforming for Signal Estimation: A Competitive Approach
Beamforming is a classical method of processing temporal sensor array measurements for signal estimation, interference cancellation, source direction, and spectrum estimation. It has ubiquitously been applied in areas such as radar, sonar, wireless communications, speech processing, and medical imaging (see, for example, [1, 2, 3, 4, 5, 6, 7, 8] and the references therein.) Conventional approac...
متن کاملCompetitive Mean-Squared Error Beamforming
Beamforming methods are used extensively in a variety of different areas, where one of their main goals is to estimate the source signal amplitude s(t) from the array observations y(t) = s(t)a + i(t) + e(t), t = 1,2,..., where a is the steering vector, i(t) is the interference, and e(t) is a Gaussian noise vector [1, 2]. To estimate s(t), we may use a beamformer with weights w so that s(t) = w*...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korea Academia-Industrial cooperation Society
سال: 2013
ISSN: 1975-4701
DOI: 10.5762/kais.2013.14.2.625